P425/1
PURE MATHEMATICS
Paper 1
August 2016
3 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

- Answer all the eight questions in section A and any five questions from section B.
- Any additional question(s) answered will not be marked.
- Show all necessary working clearly.
- Begin each answer on a fresh page of paper.
- Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.

Turn Over

SECTION A (40 MARKS)

Answer all questions in this section

- 1. Solve the simultaneous equations 2x y + 2z = 6 and $\frac{x+2}{3} = \frac{y+2}{4} = \frac{z+2}{5}$ (5 marks)
- 2. Solve the equation $(1 \sin x)^2 + (1 + \cos x)^2 = 1$ for $0^\circ \le x \le 180^\circ$. (5 marks)
- 3. The points A, B and C have position vectors $4\mathbf{i} + 10\mathbf{j} + 6\mathbf{k}$, $6\mathbf{i} + 8\mathbf{j} 2\mathbf{k}$ and $\mathbf{i} + 10\mathbf{j} + 3\mathbf{k}$ respectively. If A, B and C are the vertices of a triangle show that angle ABC is a right angle.

(5 marks)

- 4. (i) By eliminating \mathcal{E} from $y = \sin(\mathcal{E} + \omega t)$, form a differential equation. (3 marks)
 - (ii) State the order of the differential equation in (i) above. (1 mark)
- 5. The distance of the point (2, -1) from the line $y = \frac{3}{4}x + p$ is twice its distance from the line $y = -\frac{3}{4}x$. Find the value of p. (4 marks)
- 6. Using the substitution of $u = \sin \theta$, evaluate $\int_0^{\pi} \sin^2 \theta \cos^3 \theta d\theta$ (6 marks)
- 7. Solve the equations $\log_b a + 2\log_a b = 3$ and $\log_9 a + \log_9 b = 3$. Given that $a \neq b$ (6 marks)
- 8. The radius of a sphere increases at a rate of 0.01cms⁻¹. Find the rate at which the (i) surface area increases,
 - (ii) volume increases, when the radius is 21cm.

(5 marks)

SECTION B (60 MARKS)

Answer any five questions from this section.

9. Express $\frac{2x^2 - 5x + 7}{(4x^2 - 9)(x + 2)}$ in partial fractions. Hence expand $\frac{2x^2 - 5x + 7}{(4x^2 - 9)(x + 2)}$ in ascending powers of x up to the term containing x^2 .

(12 marks)

- 10. Given the curve $y = \frac{(x-2)^2}{x+1}$,
 - (i) Determine the turning point of y.
 - (ii) Find the region where the curve is not defined.
 - (iii) Sketch the curve.

(12 marks)

11. (a) Given that the point C divides the line \overline{AB} in the ratio 1:2 and the position vectors of A and C are $-4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} + 12\mathbf{k}$ respectively, find the coordinates of point B.

(5 marks)

(b) A plane contains points A(4, -6, 5) and B(2, 0, 1). A perpendicular to the plane from the point P(0, 4, -7) intersects the plane at point C. Find the Cartesian equation of the line \(\overline{PC}\).

(7 marks)

- 12. (a) Solve the equation $7\cot x \csc x = 5$. For $0 \le x \le \frac{3}{2}\pi$. (5 marks)
 - (b) Given triangle PQR, prove that $\tan\left(\frac{Q-R}{2}\right) = \frac{q-r}{q+r}Cot\frac{P}{2}$. Hence solve the triangle with two sides 5cm and 7cm including angle 45°. (7 marks)
- 13. (a) Use De Moivre's theorem to express tan4θ in terms of tanθ.(5 marks)
 - (b) Solve the equation $z^3 + 80 = 0$ (7marks)

Turn Over

14. (a) Given that
$$x = \sin\theta$$
 and $y = 1 - \cos\theta$, show that
$$\left(\frac{d^2y}{dx^2}\right)^2 = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^2 = 0$$
 (5 marks)

- The displacement x of a particle at any time t is given by x = sint. Find the mean value of its velocity over the interval $0 \le t \le \frac{\pi}{2}$ (b) with respect to;
 - time, (i)
 - displacement. (ii)

(7 marks)

- If the line 2x 3y + 26 = 0 is a tangent to the circle 15. (a) $x^2 + y^2 - 4x + 6y - 104 = 0$, find the coordinates of the point of (6 marks) contact.
 - Find the equation of the circle which passes through the points (1, 1) and (1, -1) and is orthogonal to $x^2 + y^2 = 4$. (6 marks)
- In a certain city, the rate at which buildings are collapsing is proportional to those that have already collapsed. If initially B_o buildings have already collapsed,
 - Show that $B = B_0e^{kt}$ where k is a constant and B_0 is the number (a) (8 marks) of buildings that have already collapsed.
 - (b) If the number of collapsed buildings doubled the initial (2 marks) number in 10 years, find the value of k.
 - Determine the number of buildings that would have collapsed (2 marks) after 30 years in terms of the initial number Bo.

END